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We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing
to the Dirac equation in the continuum limit. In the presence of disorder (Gaussian potential disorder and
random vector potential), we investigate the behavior of the density of states (DOS) numerically and analyti-
cally. While an upper bound can be derived for the DOS on the SQL at the Dirac point, which is also confirmed
by numerical calculations, no such upper limit exists on the HCL in the presence of random vector potential.
A careful investigation of the lowest eigenvalues indeed indicates that the DOS can possibly be divergent at the
Dirac point on the HCL. In spite of sharing a common continuum limit, these lattice models exhibit different

behavior.
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I. INTRODUCTION

Graphene, a two-dimensional (2D) sheet of carbon atoms
forming a honeycomb lattice, has set the stage for studying
Dirac-type quasiparticles in two-dimensional materials.!=3 A
substantial part of the investigation has been devoted to the
unusual transport properties of graphene. More recently, also
local properties have been studied.*>

Many physical properties depend directly or indirectly on
the density of (quantum) states (DOS) at the Fermi energy.
Therefore, the DOS, especially near the Fermi level, is an
interesting and important quantity to study. Local probing of
graphene, such as in the recent scanning tunneling micros-
copy experiments,*> has also raised interest in the local
DOS. Moreover, the DOS at the Dirac point (DP) also plays
an important role as an indicator for spontaneous symmetry
breaking, which causes long-range correlations in graphene.®

In pure graphene (or for pure Dirac fermions), in contrast
to disordered graphene, the DOS vanishes linearly like
p(E)~|E| at the Dirac point E=0. Scattering by disorder
may create new states’ at any energy, also at E=0. As a
consequence, the linear behavior of the DOS at low energies
is affected by disorder. On the other hand, the linear behavior
of the DOS can be considered as a power law of a critical
phenomenon with exponent 1. In fact, the phase transition in
the 2D Ising model is directly linked to this linear behavior
of the DOS of 2D Dirac fermions.® A common belief is that
disorder or additional interaction effects do not destroy the
critical phenomenon but only modify the exponent of the
corresponding power law. This possibility has also been dis-
cussed for the Dirac fermions, for instance, in the case of a
random vector potential.”!! Another possibility is that disor-
der creates a new intermediate phase between the two phases
of the pure system.!?

For weak disorder we can apply a perturbation theory
with respect to a random vector potential. This approach
gives a power law
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(p(E) ~ [E]* (a=1), (1)

where the exponent decreases with increasing variance of the
disorder distribution g as

a~1-g/m. (2)

On the other hand, there has been a long debate in the litera-
ture whether or not the exponent can have negative values
for strong disorder (i.e., whether or not there is a divergent
average DOS in the case of strong disorder) for the model
with a single Dirac cone.%!!:13.14

The case of two Dirac cones with intervalley scattering
has also been discussed intensively in the literature.'’-1>-17
Intervalley scattering may affect the density of states
strongly, leading to a power law with a universal exponent
a=1/7 for any strength of disorder.!!

The power law of the density of states has direct implica-
tions for the transport properties. The Einstein relation states
that the conductivity o and the DOS are proportional to each
other,

o= p(E)D(E),

where D(E) is the diffusion coefficient. If p(E) vanishes at
the Dirac point E=0 for a>0, the conductivity also vanishes
as long as D(E=0) is finite. The latter should be the case in
the presence of disorder because D(E) measures the amount
of scattering since D is proportional to the scattering time 7.
An exceptional case is a pure system, where transport is
ballistic [D(E— 0) — ]. On the other hand, if p(E) diverges
at the Dirac point for @ <0, the conductivity also diverges
unless the diffusion coefficient vanishes.

An alternative approach for the density of states is the
self-consistent noncrossing (or Born) approximation.'3-20
The perturbative result of the DOS in Egs. (1) and (2) was
confirmed for the tight-binding model on the honeycomb lat-
tice (HCL) within the self-consistent calculation.!” However,
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very close to E=0 an interception of the power law was
found, indicating a nonzero DOS at E=0. Moreover, the cal-
culation gave only positive exponents «, even for strong dis-
order, in contrast to the exponent suggested in Refs. 9 and
11,

_l—g/ﬂ'
_1+g/77'

In order to shed some light on the behavior of the average
DOS near the Dirac point, we shall focus in this paper on
two cases: (i) a single Dirac cone with random vector poten-
tial and (ii) the honeycomb lattice with unidirectional ran-
dom bonds. By comparing these two cases we estimate the
effect of intervalley scattering on the DOS.

The paper is organized as follows: after a brief introduc-
tion of the tight-binding model for graphene and the intro-
duction of a specific square lattice (SQL) model, possessing
Dirac fermionic excitations, we discuss the underlying sym-
metries of the models in Sec. II. Based on these consider-
ations we derive a simple expression for the local DOS in the
case of the single Dirac cone with random vector potential in
Sec. II B. This allows us in Sec. II C to give an upper bound
for the average local DOS. In the third part of the paper (Sec.
III) we apply exact diagonalization (ED) to the specific
square lattice model with random vector potential and to the
tight-binding model on the honeycomb lattice with unidirec-
tional bond disorder to study the energy levels near the Dirac
point for finite systems.

II. MODELS AND SYMMETRIES
A. Honeycomb lattice

The starting point is a tight-binding model for quasiparti-
cles on the honeycomb lattice, which is a bipartite lattice.
After dividing it into sublattices A and B, the quasiparticles
are pseudospin-1/2 particles with respect to the two sublat-
tices, and the corresponding Hamiltonian has a chiral sym-
metry. This allows us to write

HCL 4
H= E 2 H”r,j,c s

rr' jj'=12

where r runs over sublattice A and j refers to sublattice A
(j=1) and sublattice B (j=2). The only energy scale of this
Hamiltonian is the nearest-neighbor hopping energy f.
Nearest-neighbor hopping takes place only between different
sublattices such that the Hamiltonian can also be written as

FHCL _ ( 0 HAB)
HBA O ’

where H,p is acting from sublattice B to sublattice A. Here
we have H, BA:HXB (superscript T is the transposition of ma-
trix elements with respect to the lattice coordinates) since H
is a symmetric matrix on the honeycomb lattice. Using H,
=(H,z+Hpg,)/2 and H,=i(H,z—Hp,)/2, the Hamiltonian
matrix can be expressed with Pauli matrices as®!
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HHCL=H10'1+H20'2. (3)

It should be noticed that H;, H, are symmetric and antisym-
metric matrices (H|=H,,H,=—H,) in real-space representa-
tion, respectively. Choosing a two-dimensional orthonormal
basis with one vector parallel to a pair of nearest-neighbor
sites, we can apply a Fourier transformation to get the Fou-
rier components of H;, H, as

3
hy=—1> cos(a; k), hy=-1>sin(a;-k),  (4)
j=1 j=1
with a;=a(—3/2,1/2), a,=a(0,-1), and a;=a(:3/2,1/2)
pointing toward nearest neighbors on the honeycomb lattice,
where a is the lattice constant and ¢ is the hopping integral.
The corresponding quasiparticle dispersion E;=* \s”h%+h§
has two Dirac cones (two “valleys”) at low energies, E;~ 0.

B. Dirac Hamiltonian on a square lattice

Considering quasiparticles at low energies only, we can
expand the Hamiltonian around both Dirac points. Then we
get a model that describes two separate spin-1/2 Dirac
spinors. Scattering by disorder can, in principle, connect
these two Dirac cones (valleys). It has been discussed that
this leads to the SU(2) Wess-Zumino-Witten model" (but
see also Ref. 13). On the other hand, if intercone scattering is
ignored (for instance, by assuming a smooth scattering po-
tential that is constant on the scale of a few lattice spacings),
the two valleys of the model are completely isolated from
each other and each valley can be studied separately. The
corresponding Hamiltonian Hj, is again a chiral spinor-1/2
Hamiltonian

HD=D10'1+D20'2. (5)

D, and D, are given by D;=i[ & ya — Opr- 2‘] where a; are
elementary lattice vectors. These ma{nces are now antisym-
metric spatial matrices [D]T——Dj(] 1,2)] with imaginary
matrix elements and the o’s denote the sublattice degree of
freedom. In contrast to the symmetric tight-binding Hamil-
tonian on the honeycomb lattice HHCL, it breaks the time-
reversal invariance because it is not symmetric: Hj,=H},
=0,H,0,. (The transposition acts here on the lattice coordi-
nates as well as on the Pauli matrices.) The Fourier compo-
nents of D, D, are given by

dy=-2tsin(k,a), d,=-2tsin(k,a). 6)
From this, the energy spectrum follows as E.==* \rd%+d§

and the position of the Dirac point, determined from E. =0,
is given by (k.a,k,a)=(nm,mm) with n and m integers. Al-
together, there are four independent Dirac points now located
at (kua,k,a)=(0,0), (0,7), (7,0), and (7, 7). Since these
Dirac points are far apart in Fourier space, their contribution
to the density of states can be separated. Moreover, we as-
sume that D; are lattice hopping matrix elements with
nearest-neighbor elements on a square lattice whose con-
tinuum limit is the j component of the 2D gradient V. This
fictitious square lattice is sketched in Fig. 1 with sublattice-
dependent hopping amplitudes. Thus, the Hamiltonian Hp
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FIG. 1. (Color online) The square lattice whose continuum limit
is the Dirac Hamiltonian is visualized. Filled red and empty black
circles denote the two sublattices and thick/thin lines denote the
hopping/lattice. The hopping matrix elements are indicated. Note
the sublattice dependent hopping amplitudes.

describes lattice Dirac fermions. The connection with the
tight-binding Hamiltonian H"L is only through the fact that
these Hamiltonians share the same low-energy properties
near their Dirac points E;,~0. The appearance of new Dirac
points (related to the fermion doubling problem??) is not a
problem here because it only multiplies the density of states
with a factor 2.

Disorder can appear in Hp in form of a random scalar
potential, a random mass, or a random vector potential.9
Only the latter preserves the continuous chiral symmetry. It
is believed that this type of disorder is related to ripples in
the graphene sheet.”»?* In the following, disorder due to
ripples will be considered. This can be represented by a ran-
dom vector potential (V;,,V,,) as

H=(D1+V1)0'1+(D2+V2)0'2. (7)

This Hamiltonian has three essential symmetry properties: it
is Hermitian (i.e., H'=H), it satisfies the following relations,

0'3H0'3 =— H, (8)
and with the staggered diagonal matrix D,
Drj,r'j' = (_ 1)r1+r25r,r' 5j~j,’
we get (cf. Appendix A)
oDH'™Do = H. 9)

The fact that H is Hermitian implies for the Green’s function
G(ie)=(ie+H)™! the relation

G'(ie) = G(-ie). (10)
Moreover, Eq. (8) implies
03Glie)o3=—G(-ie), (11)
and Eq. (9) implies
0DG(ie)"Da, = Glie). (12)

The spatial diagonal elements of the Green’s function G,,(i€)
can be expressed in terms of Pauli matrices as
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G, (ie) =golie)oy+ g (i€) o) + g (i€) o, + g3(i€) 05.

(13)

The three relations in Egs. (10)—(12) provide the following
relations between the coefficients of the Pauli matrices:

goli€) = go(—i€) = — golie),
giie)=g,(—ie) =g (ie),
gylie)=g,(—ie) =g lie),

g;(ie) =0.

Note that this is a clear consequence of Eq. (12), which holds
true only on the square lattice. Thus, g, is purely imaginary,
whereas g, and g, are real and gz vanishes,

G, (ie) = golie)og+ gi(i€) oy + gr(i€) 0. (14)

C. Local density of states of Dirac fermions

The Green’s function G=(ie+Hp)~" allows us to write for
the local DOS for a fixed random disorder configuration

1
Pr=- ~—Im Tr2(Grr), (15)
2m

where €>0 is implicitly sent to zero and the trace Tr, is
taken with respect to the Pauli matrices. As a function of the
random vector potential at site r(V;,,V, ), the local DOS p,
of the Green’s function in Eq. (14) has a Lorentzian form [cf.
Eq. (B1) in Appendix B]

1 Xo+ €
(X P+ (X + V) (Ko V)

P, (16)

with some real variables X;,X, and a positive real variable
e€+X,, where the latter is proportional to €. They depend on
Vi, Va0 for r' #rbut not on Vi ,,V, . This expression can
also be used to determine the DOS away from the Dirac
point at energy E # 0 by replacing e— e—iFE,

®-r (X, + €~ iE)

= —REC .

PREIZ 5 (ot €= i)+ (X, + V1 )2+ (Xo + Vs, )2
(17)

It should be noticed that this form of the local DOS is very
special for the Green’s function in Eq. (14). For instance, we
would not get a Lorentzian in the case of a random scalar
potential.

Expression (17) enables us to evaluate the local DOS
p,(E) for the extreme case of an impurity at site r. According
to Eq. (B2) the parameters X;(j=0,1,2,3) of the system
without disorder are

X0=—E+iE—i/g0, X1=X2=X3=0,

where
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~ ie+E d*k
80Z7 | (eCiE2+ K2 2m

(18)

We can also study a local scalar potential E, by adding —iE,
to X, in Eq. (17). Then the local DOS reads for the local
random vector potential and for the local random scalar po-
tential, respectively,

1 180
A(E,V,,)=—Re| ——|,
p( L) m |:1_gév%,r:|

1 igo
E.E,)=—Re .
pAE,E,) - { - gOEJ

The contribution of the two local potentials is quite different:
while p,(E, V) is always symmetric in E as a consequence
of go(E)"=-go(~E),

igo(—E)
1 - go(=EPV3 )

. o (E
R
1 —govl,r 1 - go(E) V1,r

the local DOS p,(E,E,) is not symmetric in general. This
allows us to distinguish between the two types of local dis-
order by measuring the shape of the local DOS.

A direct evaluation of the variables X j(ij, 1,2,3) is dif-
ficult in the general case, where we have a random vector
potential at all sites. However, for finite and sufficiently
small systems an exact diagonalization is possible. More-
over, we can derive an upper bound for the average local
DOS. This will be discussed in Sec. II D.

D. Upper bound for the DOS of Dirac fermions

Now we perform the integration with respect to (V;,V,)
for all sites to evaluate the average local DOS. For simplic-
ity, we consider only the Dirac point £=0 here,

(py= f p 1 P(V,,)av,  P(Vy,)dVs,.  (19)

First, we perform the integration with respect to V, , using
the expression of p, in Eq. (16),

f prP( Vl,r)dvl T

_ lf (Xo+e)
) KXo+ €2+ (X + V) + (X + V)R

P(V,,)dv,,.

An upper bound for this integral is obtained from pulling out
the maximum of the distribution density P(V;,) which we
call P,;: P(V,,)=P,,. This gives

f prP(Vl,r)dvl,r

Pm (XO + E)
= 2 2 2dV1 re
m) KXo+ + (X +V, ) +(X,+V,,) '

and after integrating over the Lorentzian function, which
gives m, the right-hand side becomes P,,,
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J prP(Vl,r)dvl,r = Pm'

Going back to the expression (19), we obtain

(p) =P, f P(Vy,)dV,, f IT P(vy,0av, . P(Vy,)dV,,

r'#r

=P

m:*

In other words, the averaged local DOS at the Dirac point
E=0 has an upper bound,

max P(V). (20)

—o< V<o

<pr> = iTrz((Im Grr>) =

This means that for any smooth bounded distribution of V; ,
(e.g., for a Gaussian) the corresponding average local DOS
p, s finite. For discrete distributions, such as a binary alloy,
the upper bound is infinite though.

III. EXACT DIAGONALIZATION

For a better understanding of the details of the DOS, we
employ an exact diagonalization study on small clusters for
both models, Hamiltonian (3) on the original HCL and
Hamiltonian (7) on the effective SQL. Although both models
reduce to the same continuum limit of Dirac fermions with
random vector potential, they possess distinct structures in
the DOS, as we will discuss below. We use Gaussian disor-
der with standard deviation V (i.e., V? is the variance).

Density of states by ED. Determining the DOS of the
infinite system by studying a finite system is a difficult task
since any finite system possesses distinct energy levels, re-
sulting in separate Dirac delta peaks in the DOS at the qua-
siparticle energies. The DOS becomes continuous only in the
thermodynamic limit. In order to avoid this problem, we
choose an indirect approach to evaluate the DOS by counting
the number of eigenvalues in a narrow frequency range
around a given energy E. Strictly speaking, this leads to the
number of states around E but if the DOS is a smooth func-
tion, this provides us with a sensible definition. We obtain
the DOS shown in Fig. 2 on a 100X 100 HCL cluster with
periodic boundary conditions for unidirectional bond and po-
tential disorder using a /500 wide energy windows, where ¢
is the uniform hopping amplitude. For comparison, we also
show the result of the self-consistent noncrossing approxima-
tion (SCNCA) on the HCL.!? As is seen, the agreement is
surprisingly good for weak disorder except for the case of
bond disorder in a very close vicinity of the Dirac point.
There, for V; =< 0.6¢, the residual DOS remains zero, which is
in contrast to the finite, although exponentially small, re-
sidual value for the case of potential disorder, described cor-
rectly by the SCNCA. A narrow peak appears at the DP for
bond disorder if V;=0.67. Whether this peak remains finite
or diverges cannot be decided within this calculation of the
DOS. It should be mentioned that the DOS on a SQL is
qualitatively similar to the potential disorder case on a HCL
for strong disorder. In particular, it never diverges at the DP.
The anomalous behavior close to the DP is obvious in per-
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FIG. 2. (Color online) The DOS is shown as obtained by exact diagonalization on 100X 100 honeycomb clusters with Gaussian
unidirectional bond disorder (left panel), potential disorder (middle panel) after 1000 averages for V,/t=0.3 (blue), 0.5 (red), 0.7 (black), 0.9
(magenta), and 1 (green) from top to bottom at w=+¢. The right panel shows the corresponding self-consistent noncrossing approximation for
the same parameters for the HCL. The inset shows the narrow peak at the DP for the unidirectional case. The SCNCA leads to the same result
for pure unidirectional bond or potential disorder. Note the nice agreement between the numerical and analytical results for weak disorder.

turbation theory as well,'® where a dynamically generated
low-energy scale, similar to the Kondo scale, separates the
high- and low-energy regions in the DOS.

Eigenvalues. The investigation of the lowest eigenvalues
in the case of unidirectional bond disorder, determining the
residual DOS, may reveal some structures which are respon-
sible for the aforementioned behavior of the DOS near the
DP. Therefore, we take a single-disorder realization of H g,
chosen randomly according to a Gaussian distribution. Then
we diagonalize Hycp+V Hy, using the Lanczos algorithm
and retain the 200 eigenvalues closest to the DP (symmetric

to the DP). This procedure is repeated for different values of
V). The result is shown in Figs. 3 and 4 as a function of the
disorder strength for a 1000 X 1000 cluster on the HCL and a
708 X708 cluster on the SQL, having almost exactly the
same number of states. This reveals three different regimes.
(i) For weak disorder, the distribution of the eigenvalues is
rather dilute and is not influenced significantly by disorder.
This can explain the zero residual DOS in this case, where a
slight rearrangement of the eigenvalues changes only the
slope of the vanishing DOS. (ii) Around V|~ 0.7¢, the pattern
changes drastically for the HCL, where the spectrum be-

T T T T

1000x1000 HCL

107°
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o
-
N
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FIG. 3. (Color online) The evolution of the lowest 100 eigenvalues above the DP is shown for a 1000 X 1000 HCL cluster with a given
Gaussian disorder configuration on a semilogarithmic scale by changing the strength of the disorder. The inset enlarges the low-energy
structures and the transition from vanishing to diverging behavior. For V| >0.7T, the eigenvalues start to approach zero rapidly, as is obvious
from the semilogarithmic scale. Their increasing behavior for V;>5 is due to finite-size effects. The statistics of the eigenvalues at V;

=3t is depicted in Fig. 5.
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FIG. 4. (Color online) The evolution of the lowest 100 eigenvalues above the DP is shown for a 708 X 708 SQL cluster with a given
Gaussian disorder configuration on a semilogarithmic scale by changing the strength of the disorder. The inset enlarges the low-energy
structures and the transition from vanishing to diverging behavior. As opposed the HCL, the structure of the eigenvalues hardly changes for

V> t. Their distribution is shown in Fig. 5.

comes very dense close to zero energy. It keeps on decreas-
ing monotonically down to zero energy. This behavior is re-
sponsible for the peak and a possible divergence of the DOS.
(iii) For strong disorder (V,/t~5), the eigenvalues depart
from the DP again. This crossover is related to finite-size
effects since the characteristic disorder value shifts markedly
to higher values with increasing system size.

This is different for the SQL. At low values of V|, the
DOS behaves similarly for the HCL as well as for the SQL,
where the DOS goes down in a power-law fashion, with
decreasing exponent, but retains a finite value at the DP. For
V,>1t, however, the eigenvalue pattern is strongly affected
only on the HCL by the explicit value of the disorder. A
direct study of the DOS reveals no peak around the DP for
the SQL but a finite residual value. This reflects the upper
bound which was derived in Sec. II C. We mention that the
isotropic bond disorder produces qualitatively similar results
to the unidirectional bond disorder case on the HCL, with
possibly diverging DOS at the Dirac point.

In order to obtain the DOS, we employ another approach
for evaluating this quantity at the DP, which was introduced
in Ref. 25: we determine the number of states N(E) in a
given energy interval E around the Dirac point and define the
DOS as limg_,, N(E)/E. As is seen in Fig. 6, the resulting
DOS for V;=0.7t shows an upturn with decreasing energy
for bond disorder, which may be indicative for a diverging
nature of the DOS. The DOS for V,;=0.5¢ still goes to zero
but the 0.7 data increases monotonically with decreasing en-
ergy. This supports the picture, that the residual DOS is in-
deed zero for V=0.6,...,0.7t and changes to a diverging
behavior afterward. The results for V=0.3¢ are probably
strongly affected by finite-size effects. By fitting the resulting
curves with a power law, we determine the exponent ()
which is characterizing the DOS close to the DP (cf. Fig. 7).
From « the dynamical exponent z follows as z=2/(1+a).

According to Ref. 25, the latter changes its behavior at z
=3, which is reached here at V,/t~2.5, and it increases lin-
early with V. For comparison, the case of potential disorder
is plotted as well in Fig. 8, where the DOS tends smoothly to
a constant value at E=0. The SQL with V, disorder exhibits
qualitatively similar behavior to the potential disorder case
on the HCL.

15
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FIG. 5. (Color online) A typical distribution of the lowest eigen-
values is shown for V/t=3 for both the HCL and the SQL. In the
former case, the eigenvalues precipitate to zero very fast, resulting
in a sharp peak around zero energy. As opposed to this, the distri-
bution for the SQL is more uniform, yielding a nondiverging con-
stant DOS.
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FIG. 6. (Color online) The number of states divided by energy [~p(w)] is plotted as obtained by exact diagonalization on 100X 100
honeycomb clusters with Gaussian unidirectional bond disorder (left panel) and potential disorder (right panel) after 1000 averages for
several values of the disorder. The upturn with decreasing energy for bond disorder is indicative to the diverging DOS at E=0 for V/t

=0.6.

Finite DOS on the SQL. Now we turn our attention to the
square lattice model in Eq. (5). For the pure system, there is
no difference between the HCL and the SQL for the DOS
near the DP since excitations close to half filling are Dirac
fermions in both cases. Thus, the DOS increases linearly
with energy. It also exhibits a weak logarithmic singularity at
the saddle point of the spectrum and falls off monotonically
with increasing energy toward the band edge, as is seen in
the inset of Fig. 9. The V, disorder in Eq. (7) on the lattice
model plays the role of a random vector potential, which is
perpendicular to the (pseudo)spin-quantization axis o. In the
presence of V| disorder the DOS on the SQL is different
from that of the HCL with unidirectional bond disorder: no
peak develops at zero energy for strong disorder, and the
DOS terminates at a finite value with vanishing slope, simi-
larly to potential disorder in the HCL. Using an energy win-
dow of #/500 as for the HCL, we can evaluate the DOS as
described above. The residual values are plotted in Fig. 9 and
compared with the upper bound. As is seen, the upper bound
becomes very sharp for strong disorder in this case and does
not seem to apply to the HCL with a possibly diverging
DOS.
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FIG. 7. (Color online) The exponents of the DOS [p(w) ~ w®]
and the dynamical exponent z=2/(1+ ) are plotted for the HCL for
strong disorder. Note the horizontal axis, which is the standard de-
viation and not the variance.

IV. CONCLUSIONS

We have evaluated the eigenvalues and the average DOS
for the tight-binding model on the honeycomb lattice with
random unidirectional bonds and for Dirac fermions on the
square lattice with random vector potential. Both models
have the same continuum limit, namely, Dirac fermions with
a random vector potential. The model on the square lattice
can be considered as a network approximation of the honey-
comb lattice,?® where the shortest scale of the network model
is the mean-free path of disorder scattering. The latter can be
much larger than the interatomic distance a of the tight-
binding model with Hamiltonian AHCL. This implies that mi-
croscopic properties are ignored except for those with very
low energies. However, in their lattice form the density of
states of our models differ substantially near the Dirac point:
in the model on the honeycomb lattice the average DOS has

w/t

FIG. 8. (Color online) The number of states divided by energy
[~p(w)] is plotted as obtained by exact diagonalization on 90
X 90 square lattice after 1000 averages for several values of the V,
disorder. It resembles closely to the potential disorder case of the
HCL.
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FIG. 9. (Color online) The residual DOS of the square lattice
[Eq. (7)] is plotted, obtained on 90X 90 and 30X 30 clusters with
Gaussian V, disorder (red squares and blue circles) after 10> and
10* averages, respectively. The black straight line is the upper
bound, p(0)<1/y27V,. Note that it does not involve any fitting
parameter and becomes very sharp for strong disorder. Larger sys-
tems show similar behavior. Inset: the DOS of a 90X 90 SQL is
shown after 1000 averages for V;/¢=0.5, 0.8, 1, 1.5, 2, and 2.5 with
decreasing peak position at w=2t.

a sharp peak which is not present in the model on the square
lattice. Although it is not entirely clear, whether or not this
peak survives the limit of the infinite system, its existence on
the finite cluster is remarkable. The evolution of the eigen-
values close to the Dirac point in large systems supports the
idea of a diverging peak in the DOS. We have also checked
numerically that isotropic bond disorder produces similar be-
havior.

We have studied the effect of potential disorder on the
honeycomb lattice as well, which exhibits qualitatively simi-
lar behavior to the square lattice with random vector poten-
tial but differs from the case of random unidirectional bond
on the honeycomb lattice at low energies in the DOS: the
residual DOS always takes a finite although exponentially
small value.?”-?® These results can surprisingly well be repro-
duced for weak and moderately strong disorders using the
self-consistent noncrossing approximation, except for the
low-energy structures in the case of bond disorder.

Using the mapping of the model on the HCL to the SU(2)
gauge-field theory,!"!>17 the presumably exact power law of
the latter p~|E|"7 in Ref. 11 represents a puzzle for the
approximation of disordered lattice models by their corre-
sponding continuum counterparts. The same is true for the
model on the square lattice, where the DOS at the Dirac
point has an upper bound according to Eq. (20). In contrast,
for the continuum limit several groups found a power law
with the exponent®!!

1-g/m
a=—",
1+g/m

which is negative for sufficiently strong disorder. This poses
severe questions on the applicability of universality idea. Al-
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though both lattice models reduce to the same continuum
limit and are expected to behave in a similar manner, as
dictated by the common continuum limit, this is apparently
not the case here. We have also checked the case of uniform
disorder distribution and found similar results. The above
results were found to be robust with respect to variations in
system size, boundary conditions, and disorder distribution.
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APPENDIX A: DISCRETE SYMMETRY
From Dsz—Dj and ol =0, o5=—0, follows
HT= (— Dl + Vl)a-l - (— D2 + V2)0’2.

Next, the staggered potential D changes the sign of nearest-
neighbor matrix elements,

DH'D = (D + V)0 — (D + V)0,
and o anticommutes with o,

(T]DHTDO'] = (Dl + Vl)O'l + (D2+ V2)(7'2=H.

APPENDIX B: MATRIX ELEMENTS OF THE GREEN’S
FUNCTION

The spatial diagonal matrix elements of the Green’s func-
tion have been given in Eq. (14). Another way to write G,, is
by projecting it with P, onto the site r. This gives the matrix
identity®

G,.=P,GP.=[ie+ V.0, +V o,
- P,H(1-P,)G,_p (1 - P,)HP,];',
where G,_p_is the Green’s function G(ie)=(ie+H)™" on the
Hilbert space where the site r has been removed. The 2 X2

matrix P,H(1 -P)G,_p(1 —P,)HP, does not depend on the
random variables V, and V.. Its general form is
iXo+ X3

—iX,+ X,
iX, + X, '

P,H(1-P)G, p(1-P)HP,=—
r ( r) lPr( ) |: iXO—X3

Here, the X,,’s do not depends on V, and V, by construction,
ensured by the projection operators. Therefore, G,, reads

[ ie+iXy+Xs
TliX, 4 X 4V, iV
1
(e+X,)? + X3+ (X + V)2 + (X + V)2
[ ie+iXg—X; iX2+X1+V,+iV;]
—iX, + X, +V, =iV ie+iXy+ Xs '

r

— X+ X, + V=iV, |
if+iX0—X3

(B1)
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This result can be compared with Eq. (14) to obtain the re-
lations

81 . . 80
Xi==Vi+ T "5 3, iXo=-ie-—5 "5 .,
—80t81t4& —8t81t4&
Xp=-Vi+ —25—, (B2)
-8 t81t8:
and
X3=O.

All three matrix elements X,,X,,X, are real since g, is
purely imaginary and g, as well as g, are real.

Finally, we can use the block-matrix inverse to show that
go 1s proportional to —ie with a positive proportionality fac-

PHYSICAL REVIEW B 79, 235431 (2009)

tor. Choosing the diagonal blocks with respect to the sublat-
tice (or spinor) index j, we obtain

Gy =lie= (D, +V,=iD,—iV,) (D, + V| +iD, +iV,)/i€]™
=—id &+ (D +V,=iDy—iV,) (D, + V, +iD, +iV,) ]!
=—id &+ (D, +V,=iD,—iV,) (D, +V,—iD,—iV,)']!

and

Gyp=lie= (D +V,+iD,+iV,) (D, + V| —iD, —iV,)/ie]™!
=—id €+ (D +V,+iD,+iV,) (D, + V|, —iD, —iV,) ]!
=—id e+ (D +V,-iD,~iV,)’

X(Dy+V,=iDy—iVy)] .

Thus iXy+ie=cie with ¢>0.
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